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Abstract— Nowadays, traffic management and sustainable 

mobility are becoming one of the central topics for intelligent 

transportation systems (ITS). Thanks to the today’s 

technologies, it is possible to collect real-time data to monitor 

the traffic situation in some specific areas. An important 

challenge in ITS is the ability to predict road traffic variables. 

The short-term predictions of traffic aspects are a complex 

nonlinear task that has been the subject of many research efforts 

in the past few decades. Accessing to precise traffic flow data is 

mandatory for a large number of applications which have to 

guarantee high level of services such as: traffic flow 

reconstruction, which in turn is used to perform what-if 

analysis, conditioned routing, etc.  They have to be reliable and 

precise for sending rescue teams and fire brigades.  This paper 

proposes a solution for a short- and long-term traffic flow 

prediction estimation by using and comparing a number of 

machine learning approaches. The solution has been developed 

in the context of Sii-Mobility smart city mobility and transport 

national project and it is in use in other EC projects and solution 

such as Snap4City PCP EC and TRAFAIR CEF, but also for 

REPLICATE H2020 SCC1 and control room in Florence area.  

Keywords- smart city, traffic sensors, short-term predictions, 

prediction models, machine learning, reconstruction algorithm, 

traffic flow.  

I.  INTRODUCTION  

Traffic measuring is a central topic for intelligent 

transportation systems (ITS). Thanks to the today’s 

technologies real-time data can be collected and used to 

monitor the traffic. The knowledge of real-time traffic 

information enables the development of a relevant number of 

services and improvements in many areas: congestion 

detection and reduction; computing of O-D origin-destination 

matrices; incident management; optimization of existing 

infrastructures of public transport; dynamic network traffic 

control; improved information services (e.g., traffic 

information, dynamic route guidance, road digital signage); 

plan for future investments on mobility solutions; reducing 

fuel consumption and emissions for CO2, NO2 that strongly 

depend on traffic. See on this fact, the normative of the 

European Commission regarding the conformant of the 

environmental value with respect to the reference values 

(2008/50/EC Directive on Ambient Air Quality and Cleaner 

Air for Europe and 2004/107/EC Directive on heavy metals 

and polycyclic aromatic hydrocarbons in ambient air).  

Traditional methods for traffic flow measuring via spire 

sensors are very expensive for installation and maintenance 

and thus can be only arranged on a limited number of points 

in the city. Surrogated of traffic flow data can be obtained 

from data collected by mobile applications such as 

navigators, as well as from on board units, as performed by 

tracking systems of fleets and insurances. For example, in 

[15] a smartphone-based crowd sensing system for traffic 

regulator detection and measure has been proposed, where 

the data are gathered from the handheld devices located 

within the running vehicles. On the other hand, the data 

coming from navigator Apps (e.g., TomTom, Google map, 

Waze) could be very expensive. The usage of TV Cameras 

located in specific critical points and not at the crossing 

reduces the costs thus allowing the installation of a higher 

number of traffic sensors, and thus made possible their 

exploitation for the above-mentioned applications.  

Traffic sensors provide continuous measuring of the traffic 

on selected roads at fine grain, and in most cases also 

providing information about the vehicle’s kind. On traffic 

flow sensors, a variety of dysfunctions can be experienced 

which provoke the lack of data. Therefore, when data 

measures are missing, it is important to be capable to provide 

services to citizens in any case. There are relevant services 

among the above-mentioned that need to guarantee a 

significant service level and continuity thus providing a 

needed level of quality for the real-time services. Among 

them, (i) the traffic flow reconstruction, that allow to compute 

a traffic flow in each segment of the road network [1]; (ii) 

conditioned routing or the what-if analysis for rescue teams, 

fire brigade, etc. The use of stationary scattered sensors data 

the monitoring of traffic status can be combined with the 

short-term predictions of traffic flow to reduce 

discontinuities in the above mentioned services, thus 

accepting a certain level of error that could maintain the 

needed service level, and prevent the infringement of relevant 

constraints of the service level agreements.  

Thus, on traffic flow sensors, different types of dysfunctions 

may prevent the reception of data: network failure, broken 

device, wrong data production, and byzantine errors. When 

the fault is temporary, an accurate short-term traffic 

prediction model could solve the problem producing the 

missed real-time data. In the case of long-term dysfunction, a 

long-term predictive model (e.g., one week) could be adopted 

to use predicted values in place of broken device ones. On the 

other hands, long-term traffic predictions are very 

challenging due to the dynamic nature of traffic flow data. 

And, an anomaly detection algorithm has to be adopted to 

alert the municipality about the device's failure to start fixing 



the problem. The anomaly detection can be the technique to 

activate the predictions in place of the lack of data.  

In literature, short-term and long terms traffic flow 

predictions have attracted extensive research efforts in the 

past decades and nowadays remained a growingly active 

research topic.  In [10, 11, 12, 13, 14], the traffic state analysis 

is related to the monitored areas in terms of short-term traffic 

flow prediction on fixed points and no information is given 

where sensors are not located. In [10, 11], the theoretical 

basis for modelling univariate traffic condition data streams 

as seasonal autoregressive integrated moving average 

processes are considered. In [12, 14], the problem of short-

term prediction has been assessed in freeways thorough deep 

learning models exploiting historical information only. In 

[19], the authors discussed the random forest model for the 

prediction of short-term traffic flow achieving an accuracy 

about 94%. In [20], neural networks, random forest, a 

gradient boosting machine, and a generalized linear model 

have been investigated in order to short-term predict traffic 

volume, speed, and occupancy of a single roadway segment. 

The authors have applied the model only on 1.3-mile section 

of westbound Interstate 64 (I-64) in St. Louis, Missouri, in 

the United States, obtaining an accuracy about 92%. Even in 

these cases the authors involved historical information only 

to predict the traffic conditions. In [24], three methods for a 

short terms traffic prediction of a single road have been 

compared (i.e., CNN, GRU, GRU+STFSA) exploiting 

historical information in a period of 40 working days. In [23], 

traffic volume is predicted on highway domain, using 

characteristics as: weak time continuity, structural space 

topology, and wider spatio-temporal correlation.  

In the above presented cases, simple network areas as 

freeways or rings are considered and only for short-term 

prediction, taking into account only historical data. The 

present paper covers a complex urban network in a real-world 

road structure, and it investigates on the influence of 

historical traffic related features and on external information 

as actual weather and weather forecast features. In particular, 

the relevance of each variable has been evaluated to have a 

view of factors that are the most related with the traffic 

conditions in the city. In addition, a study of sensors through 

a clustering approach has been presented with the aim to have 

a topological point of view of the entire urban network 

reflecting the streets categorization. 

This paper presents a solution for the computing both short 

and long-term traffic flow sensors predictions. The solution 

has been implemented in the context of Sii-Mobility project 

and infrastructure (national smart city project of Italian 

Ministry of Research for terrestrial mobility and transport, 

http://www.sii-mobility.org). Sii-Mobility is based on 

Km4City model and tools (https://www.km4city.org) [21]. 

Sii-Mobility is presently covering the whole Tuscany region, 

Italy, which hosts 3.5 inhabitants and 40M of tourists per 

year. The solution proposed in this paper is at the basis of 

Snap4City on traffic flow analysis and reconstruction, and 

Trafair CEF for computing NOX production from traffic,  

and it is presently exploited in the Smart City Control Room 

for Florence area according to REPLICATE H2020 SCC1 

project and challenge. Moreover, for Florence, Pisa and 

Livorno municipalities in the Tuscany region the traffic flow 

data are used for traffic flow reconstruction and for other 

services [1]. 

The examples reported on the paper are related to the sensors 

traffic flow data in the Florence area, Italy, enabling the 

above-mentioned Smart City services. To this aim, a flexible 

model has been adopted to predict vehicle flow values one 

hour in advance with a resolution of 10 minutes. Therefore, 

the main contribution of this paper consists in presenting a 

machine learning approach for real-time short and long terms 

prediction of traffic flow sensor values.  

The paper is structured as follows. Section II provides a 

description of the traffic flow data, and their characterization 

in terms of clustering in groups. In addition, the identification 

of a number of features at the basis of the predictive models 

are proposed. In Section 3, the machine learning approaches 

adopted to identify and validate the predictive models and 

framework are presented. The section also focusses on the 

comparison of the predictive models (short terms as 1 hour) 

exploiting the data collected within Florence area for traffic 

sensors, to achieve the identification of the best resulting 

approach in terms of prediction error and processing time. 

Section IV analysed the changes and the impact of them on 

the predictive model of Section III for long terms prediction 

(1 week). Section V presents one of the most critical 

application in which the exploitation of traffic flow data is 

very relevant for the production of traffic flow 

reconstructions. Conclusions are drawn in Section VI. 

II. DATA DESCRIPTION AND FEATURE IDENTIFICATION 

As mentioned in the introduction, the main goal was to find 

a solution to predict the traffic flow in the locations of traffic 

sensors. Typically, for each traffic sensor, the traffic flow is 

registered every 10 minutes. The data exploited refer to the 

135 devices located in the municipality of Florence as 

depicted in Figure 1. Please note that, each device sensor 

location may measure the traffic flow on both sides of the 

road, and on multiple lanes. Therefore, in each location may 

corresponds to two distinct device logic sensors. 

 

 
Figure 1.  Map of the traffic sensors location in Florence municipality 

 

The trends of traffic flow data are strongly dependent on a 

number of road features: road relevance (primary, secondary, 

etc.), number lanes, speed limits, presence of speed meters, 



distance from road crossing, etc. Moreover, a certain class of 

roads (e.g., the so called primary/main roads of the open 

street map), may provide higher capability with respect to 

local, single lane cases.  In order to characterize the typical 

time trend H24 of the whole traffic flow sensors located in 

the city, we have performed a clustering. This approach 

allowed to aggregate device sensors with the same behaviour 

over time. The data taken into account have been those from 

November 2019, to February 2020.   

As a first step, we have tested cluster tendency by measuring 

the probability that a given data set has been generated by a 

uniform data distribution using the Hopkins statistics [8]. The 

value of Hopkins statistic resulted to be equal at 0.86, then 

the data set was proven to be significantly clusterable. As a 

second step, the K-means clustering method has been applied 

to identify clusters of traffic flow sensors. Please note that, 

K-means assigns each item to the cluster having the nearest 

centroid. In K-means clustering, there is an ideal center point 

that represents a cluster [3]. The clustering has been 

performed on the basis of the time trend H24, considering the 

normalized vehicle flow measures. The optimal number of 

clusters resulted to be equal 3, and it has been identified by 

using gap statistic criteria [4]. In Figure 2, the identified 

clusters have been represented on map, at which a different 

color pin for each cluster has been assigned.  

 

 
Figure 2.  Map of the traffic sensors location per cluster in Florence 

municipality (blue pins: Group 1; red pins: Group 1; green pins: 

Group 3) 

 

Figure 3 (a) depicts the hourly median vehicle flow trends for 

each cluster and Figure 3 (b) shows the average vehicle flow 

trends of the three most representative traffic flow sensors for 

each cluster. The three trends are mainly describing situations 

in which: (1) a peak is registered in the morning and a second 

peak is also present in the evening and this cluster is 

characterized by a high flow of vehicles; (2) an almost stable 

traffic is present in whole day working hours, characterized 

by medium flows; (3) the peak of traffic is registered in the 

morning, from 7:00 to 9:00 while in the rest of the day is the 

flow of vehicle tends to decrease. 

 

 
(a) 

 

 
(b) 

Figure 3. (a) Hourly median vehicle flow trends per cluster (Group 1, 

Group 2, Group 3) and (b) hourly average vehicle flow trends per 

representative sensor (Sensor 1, Sensor2, Sensor 3) in each cluster  

 

A. Feature Identification 

Since the aim of the research has been to identify a traffic 

flow prediction solution, a set of features have been identified 

and evaluated to have a more general view on those factors 

that are most correlated with the traffic condition in the city. 

Starting from a set of historical variables considered in 

literature, additional sets of traffic related features and 

weather information have been considered in the present 

paper. Thus, the identified large set of features has been 

classified and presented in Table 1. 

Features belonging to the Baseline (time series) category 

refer to aspects related to the direct statistical observation of 

sensors data over time. Date and time when measures are 

taken, working day or not, number of vehicles in the street, 

etc. belong to this category. Typically, the values are 

recorded every 10 minutes and are used to consider the 

seasonality of data which may have different trends, e.g., 

working days with respect to weekends. Usually, the trend of 

number of vehicles is similar from one week to another for 

the same day (e.g., Monday to Monday); thus, two other 

features have been included in the model for capturing:  

 



(i) the difference between the number of vehicles � captured 

at the same time � and the number of vehicles during the 

previous time slot of the previous week (��): 

�� = �� −  ��	
 

where � = � − 7�
�� 

(ii) the difference between the number of vehicles � captured 

at the same time � and the number of vehicles � in the 

successive time slot of the previous week (��): 

�� = �� −  ���
 

where � = � − 7�
��. 

The value of the number of vehicles related to the previous 

week respect to the observed one at the same time � has been 

considered as additional feature (����): 

���� = �� 

where � = � − 7�
��. 
Category Feature Description 

Baseline 

Vehicle Flow 

(�) 

Real number of vehicles 

recorded every 10 minutes 

Time  Hours and minutes 

Month Month of the year (1-12) 

Day Day of the month (1-31) 

Day of the week Day of the week 

Weekend  0 for working days, 1 else 

Previous 

observation’s 

difference of the 

previous week 

(��) 

�� = �� −  ��	
 

where � = � − 7�
�� 

 

Subsequent 

observation’s 

difference of the 

previous week 

(��) 

�� = �� − ���
 

where � = � − 7�
�� 

 

Previous week 

observation  

(����) 

���� = �� 

where � = � − 7�
�� 

Weather 

and 

weather 

forecast  

Max Temperature 
City maximum expected 

temperature during the day 

Min Temperature 
City minimum expected 

temperature during the day 

Temperature 
City temperature one hour 

earlier than Time  

Humidity  
City humidity one hour 

earlier than Time 

Rain 
Presence of rain one hour 

earlier than Time 

Pressure 
City pressure one hour 

earlier than Time 

Wind Speed 
City wind speed one hour 

earlier than Time 
Table 1.  Overview of the feature used in the short-term prediction 

models  

 

Features belonging to the Weather and Weather forecast are 

also collected every 10 minutes (i.e., temperature, humidity 

and rainfall). According to our analysis, the significant values 

are those related to the hour just before measured vehicle 

flow time. 

III. SHORT-TERM PREDICTION MODELS 

In this section the machine learning techniques considered 

are compared with the aim of creating a solution to predict 

the vehicle flow of each traffic sensor in the city. The 

possibility of producing both short and long terms prediction 

(see Section IV) with a satisfactory precision strongly 

reduces the errors and faults in the services where real time 

information are necessary to produce a result. In these cases, 

the new predicted values can be considered as alternative 

source of traffic information (see Section V for more details). 

 

During our research study a number of techniques have been 

discharged since they did not produce satisfactory results 

(e.g., Bayesian Regularized Neural Network and Recurrent 

Neural Network, Support vector Regression that achieves an 

R-squared less than 0.7). Among the well-known considered 

techniques, the most effective solutions are the eXtreme 

Gradient Boosting (XGBoost) [5] and the Random Forest 

(RF). In addition, we are also reporting the results of the Auto 

Regressive Integrated Moving Average (ARIMA) model as 

an alternative forecasting to show the performance of classic 

statistical solutions. The model has been developed by using 

Box-Jenkings methodology for ARIMA modeling [6]. The 

choice of the presented models has been led from a study of 

the best solutions presented in literature.  

A. Experimental Results 

According to the data and considerations reported in previous 

sections, the identified challenge was to create a flexible 

model to predict the vehicle flow with a resolution of 10 

minutes for the next hour (as short term prediction, while the 

long term prediction addressed 1 week in advance). As a 

training data set, we have selected a period of three months, 

from November 2019, to February 2020. The test set is 

made by observations every 10 minutes recorded during the 

weeks from January 27th (Monday) to February 9th  (Sunday), 

i.e., 24 (hours) per 14 (days) test sets were considered to 

calculate the error on the one-hour prediction avoiding noise. 

In reality we have much longer time periods of data into 

Snap4City platform and service, while the limitation has been 

defined to be sure that the learning is addressing the recent 

seasonality behaviour with a learning phases that is not too 

computationally expensive. In fact, taking a year of data to 

make just a prediction depending on the data of the last 4 

weeks would be completely un-useful.  

Therefore, three different approaches are reported: ARIMA 

model, RF, XGBoost, and applied on the features presented 

in Table 1. The ARIMA model has been executed as multi-

step forward with updated iteration technique: the forecast 

was computed one hour in advance. Then, the training set is 

updated with the observations recorded in the predicted hour 

and a new forecast is executed for the next hour. The RF has 

been set with number of trees composing the forest equal to 

500 and the candidate feature set equal to 1/3 of the number 

of the data set variables. For XGBoost the eta value was set 

to 0.3. In Tables 2, 3 and 4, the assessment of the prediction 



models is presented, providing the result in terms of R�, Root-

Mean-Square Error (RMSE) and Mean Absolute Scaled 

Error (MASE). Table 2 shows the Sensors of Group 1 models 

results, Table 3 shows the Sensors of Group 2 results and 

Table 4 reports those for Sensors of Group 3. Those sensors 

are representative of the clusters reported above.  
 

ML Models �� RMSE MASE 

RF 0.95 240 1.30 

XGBoost 0.96 234 1.35 

ARIMA  - 286 1.38 

Table 2.  Sensors of Group 1 prediction models result  

 

ML Models �� RMSE MASE 

RF 0.91 187 0.99 

XGBoost 0.93 170 1.09 

ARIMA - 263 1.56 

Table 3.  Sensors of Group 2 prediction models result  

 

ML Models �� RMSE MASE 

RF 0.88 203 1.19 

XGBoost 0.90 201 1.24 

ARIMA - 120 0.90 

Table 4.  Sensors of Group 3 prediction models result  
 

Considering ARIMA models, for Group 1 Sensors the best 

predicting model has been an ARIMA (2,0,5), for Group 2 an 

ARIMA (4,0,4) and for Groups 3 an ARIMA (2,0,2) model 

(all of them by  considering a predictive window of 1 hour). 

For Groups 1 and 2 the achieved results of ARIMA models 

are similar or worst with respect to machine learning 

approaches. For Group 3, the results are better respect to the 

ML method. On the contrary, the ARIMA approach, to 

achieve comparable results, has to be re-trained whenever the 

data is missing. These motivations have led to discarding the 

ARIMA model for short-term prediction. The XGBoost 

model turned out to be the better ranked in terms of R-squared 

and RMSE for most of the cases. In all representative sensors 

the R-square value is greater than 0.90 and reach the higher 

value in the prediction model for sensors of group 1 (0.96). 

The RF model seems to be better in terms of MASE for the 

sensors of group 1 and sensors of group 2 models, even if the 

values are similar to those obtained with the RF model. The 

machine learning models allowed to predict the traffic flow 

(and thus the number of vehicles) 24 hours/few days in 

advance with the same accuracy reported in Tables 2, 3 and 

4. In particular, the error measures don’t deviate in a 

significative way when the predicted time interval takes into 

account reach a maximum of 48 hours. 

In terms of processing time, the XGBoost model takes half of 

the time wrt RF model training. For this reason, XGBoost has 

been considered the best compromise and it has been adopted 

as the best solution even in long-term prediction case 

presented in the following section.  

 
Figure 4.  Variables Importance of the XGBoost model per cluster. The 

resulting histogram depicts that variable Day is the most relevant 

predictor followed by the Day of the week and the PwVF value. The 

weather conditions seem to be not so influent. 

 

Figure 4 reports the analysis of relevance for the features 

presented in Table 1. The relevance of each predictor is 

evaluated individually: during the model training, a LOESS 

[18] smoother, (i.e., a nonparametric method for regression 

estimation) is fitted between the outcome and the predictor. 

To obtain a relative measure of variable importance, the R� 

statistic is computed for the model containing the considered 

variables against the null model (intercept only). The 

resulting histogram depicts that variable Day (of the baseline 

category) is the most relevant predictor. On the contrary, 

weather status and forecast seem to be not so relevant. For 

this reason, XGBoost model has also been tested by 

exploiting baseline feature only (see Table 5). In this 

condition, the running time of the training model turns out to 

be lower (from about 130 sec for the baseline + weather 

model to about 70 sec for the baseline model).  Figure 5 

shows the comparison between predicted and real values of 

vehicle flow for (a) Group Sensors 1, (b) Group 2 Sensors 

and (c) Group 3. In the example, February 17th (Monday) has 

been considered as a typical day. 
 

 
(a) 



 
(b) 

 

 
(c) 

 

Figure 5.  Daily (Monday) vehicle flow real trend vs predicted trend 

for (a) Sensor 1 (b) Sensor 2 (c) Sensor 3  

 

Note that, the possibility of a medium-term prediction (from 

24 hours to few days in advance, using data from weather 

forecast) can be adopted to handle and predict the values in 

the case of medium-term dysfunction (e.g., a broken device). 
 

IV. LONG-TERM PREDICTION MODELS 

As mentioned in the introduction, the exclusively use of fixed 

sensors can generate disadvantages due to device 

dysfunctions. In the case of long-term devices dysfunctions, 

long-term road traffic variables prediction (one week in 

advance, from Monday to Sunday) is of considerable 

significance. The possibility of producing long term 

predictions with a satisfactory precision allow the production 

of services that give information about the traffic condition 

in the future or predicting and analysing the production of 

pollutants such as NOx coming from traffic conditions [22].  

To guarantee traffic information is useful understand and 

predict the traffic flow measures at most one week in 

advance. To this aim, the models presented in Section III, has 

been also adopted in a long-term perspective and results 

compared with the average trend for the sensor. 

A. Experimental Results 

The possibility of a long-term prediction (one week in 

advance) can be adopted to predict the values in the case of 

long-term dysfunction (e.g., a broken device). The XGBoost 

model has been applied exploiting baseline category features 

only presented in Table 1. Results have been reported in 

Table 5 and the predicted values are compared with the 

average for each hour slot.  

 

XGBoost Model 

Results 
�� RMSE MASE 

Sensors of Group 1 0.95 215 0.89 

Sensors of Group 2 0.91 178 0.82 

Sensors of Group 3 0.86 127 0.92 
Table 5.  XGBoost long-term prediction model results for each 

representative sensor group 
  

Please note that, Table 5 results regarding long terms 

prediction (1 week) can be compared with respect to those 

obtained for short-term predictions (1 hour). So that, the long 

terms resulted the most accurate in terms error measures. 

Such results are improved by using the baseline features only. 

This is a double benefit: from a computational cost point of 

view and for the accuracy aspects. Moreover, the same 

training can be used for the short-medium-long term 

predictions achieving similar results in all cases.  

On the other hand, the usage of the mean value estimated for 

each time  slot in the week, that is the typical rule  of thumb 

produce worst results in terms of error accuracy with respect 

the results presented in Table 5 (RMSE errors using average 

values are twice as many as errors using XGBoost model). 

Please note that the solution presented also outperforms the 

solutions proposed in the literature as mentioned in the 

introduction. This is due to the methods and to the fact that 

our approach considers a larger set of features including: 

metrics, and external factors such as weather condition. 

Moreover, the solution is developed in a complex urban 

network where the roads have different characteristics (e.g., 

primary roads, traffic limited roads etc.) and the results in 

terms of accuracy are satisfactory as the studies conducted in 

a single highway domain. 

V. PREDICTIVE MODEL APPLICATION 

The aim of the present section is to provide a general idea 

about one the most relevant applications of the prediction 

model results within the city traffic flow reconstruction 

algorithm presented in [1]. In some occasion, sensor data may 

come with a variety of missing values, resulting in 

considerable difficulties in the analysis and maintain the 

service. To guarantee the service, the prediction model has 

been included in the traffic flow reconstruction algorithm as 

method to impute the missing data in real time, and thus 

compensate the sensors’ network fault that happen in an 

average of 10% of time. This means that in the 10% of days 

some of the sensors are not producing the data thus reducing 

the amount of data in input at the 85%. Please note  that the 

traffic flow reconstruction can be still feasible with higher 

errors until the traffic flow sensors network is working with 

at least the 70% of sensors, resulting in an alarm and creating 

a ticket for the corrective maintenance teams: 

https://www.snap4city.org/dashboardSmartCity/view/index.

php?iddasboard=MTc2MQ==.  (see Figure 6). 



 
Figure 6.  Traffic flow data at the border of the city. Please note the 

bottom right corner widgets in which the percentage of active traffic 

flow sensors is reported by hours.  

A. City Traffic Flow Model Computational Approach 

In [1], the authors consider the traffic data coming from the 

results produce by Sii-Mobility project where a general study 

of the traffic flow reconstruction model is applied in the city 

of Florence. More precisely, a real-time visual self-adaptive 

solution for traffic flow reconstruction at every location 

within a wide area (in terms of number of road segments) is 

produced, leveraging the detections from a few fixed traffic 

sensors deployed within the area of interest. The solution has 

several advantages with respect to the solutions available in 

the literature, since it: supports complex and real-world road 

structure; presents a wider applicability; does not needs of 

third-party engagement on providing data from installed 

devices on vehicles; is robust with respect to discontinuous 

data; declared precision rate; produces real-time visual 

rendering of results. A such approach is based on modelling 

the traffic flow in the city by means of Partial Differential 

Equation (PDE) based on fluid dynamics studies. 

In details, the city traffic flow model proposed in [1] is a real-

time visual self-adaptive solution to reconstruct the traffic 

density at every location of a wide urban area from a few 

fixed traffic sensors deployed within the area of interest. A 

mathematical model for fluid dynamics on networks has been 

applied, and the road networks have been studied as direct 

graph composed by arcs that meet some nodes, corresponding 

to road junctions. In a single road the nonlinear model is 

based on the conservation of cars described by the following 

scalar hyperbolic conservation law:  

 
��(�,�)

��
 + 

� (�(�,�))

��
 = 0 (1) 

 

with: boundary conditions !(", 
) = !#("), !(", $) = !%(") 

and initial values !(0, ') = !(('). In particular, !(", ') 

denotes the vehicular density which admits values from 0 to 

!max, where !max > 0 is the maximal vehicular density on the 

road. The function )(!(", ')) is the vehicular flux which is 

defined by means the product !(", ')�(", '), where �(", ') is 

the local speed of the vehicles. In the case of first order 

approximation, if we assume that �(", ') is a decreasing 

function, only depending on the density, then the 

corresponding flux is a concave function. The discretization 

scheme in terms of finite difference is considered to obtain a 

numerical solution of the equation (1). Please note that the 

equation (1) and its solution are based on the hypothesis that 

there is a conservation of the number of cars entering and 

exiting in the area of observation. This means that each faults 

of sensors on the border of the city area causes a degeneration 

of the main working condition of the solution. On the 

contrary the usage of the predictive model allows to reduce: 

(i) the error estimation due to the lack of conservation, and 

(ii) the discontinuities provoked by the lack of data in specific 

points. 

Figure 7 shows the traffic flow reconstruction algorithm [1] 

visualization in Florence municipality. Data used in the 

algorithm are a combination between real data and short-term 

prediction model results.  

The prediction data can also be used to estimate the traffic 

reconstruction in the future considering all traffic sensors as 

missing. In all these cases, the predicted values can be 

considered as an additional source of traffic. During the real-

time evaluation of the traffic flow reconstruction the 

predicted values can be used to improve the entire model 

accuracy. More precisely, to highlight the importance of the 

prediction model inside the traffic flow reconstruction 

algorithm, a comparative approach has been conducted when 

a given sensor data is not available, with the aim to compute 

an error measure in terms of mean absolute percentage error 

(MAPE). A simulation analysis has been conducted to 

calculate the average error in reconstruction assuming that 

the value of a given sensor is missing during a 24H time slot.  

The MAPE on reconstruction without considering the 

prediction decreases from 0.25 to 0.14.  

 

 
Figure 7.  Traffic flow reconstruction algorithm visualization 

https://www.snap4city.org/dashboardSmartCity/view/in

dex.php?iddasboard=MTc5NQ== 

 

VI. CONCLUSIONS 

In this paper, we have proposed a predictive approach and 

solution for short and long terms predictions of traffic flow 

data. The solution has been developed in the context of Sii-

Mobility/Km4City smart city mobility and transport national 

project and it is in use in other EC projects and solutions such 

as Snap4City PCP EC and TRAFAIR CEF, but also for 



REPLICATE H2020 SCC1 and control room in Florence 

area. The knowledge of real-time traffic information enables 

the development of a relevant number of services and 

improvements in many areas and services: congestion 

detection and reduction; computing of O-D matrices 

(commuter plans); incident management; optimization of 

existing infrastructures of public transport that is the 

improvement of efficiency of the current road network; 

dynamic network traffic control; improved information 

services (e.g. traffic information, dynamic route guidance, 

road message signs); plan for future investments; reducing 

fuel consumption and emissions for CO2, NO2, that strongly 

depend on traffic. 
Among the applications, traffic flow reconstruction is 
probably the most critical for the precision needed and the 
reliability of the data in input to the process that are actually 
the traffic flow sensors data. Accessing to precise traffic flow 
data is mandatory to guarantee high level of services such as: 
traffic flow reconstruction, which in turn is used to perform 
what-if analysis, conditioned routing, etc. They have to be 
reliable and precise for sending rescue teams and fire brigades. 
This paper proposes a solution an approach for a short- and 
long-term traffic flow sensor value prediction by using 
XGBoost model that resulted to be the best compromise from 
precision and computational costs for both short and long 
terms prediction. The solution proposed outperformed the 
state-of-the-art solution also based on machine learning 
presented in the literature and the trivial rule that suggests the 
use of mean value.  
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